CF1463D-Pairs
CF1463D-Pairs
题目:
题目描述:
You have $ 2n $ integers $ 1, 2, \dots, 2n $ . You have to redistribute these $ 2n $ elements into $ n $ pairs. After that, you choose $ x $ pairs and take minimum elements from them, and from the other $ n - x $ pairs, you take maximum elements.
Your goal is to obtain the set of numbers $ {b_1, b_2, \dots, b_n} $ as the result of taking elements from the pairs.
What is the number of different $ x $ -s ( $ 0 \le x \le n $ ) such that it’s possible to obtain the set $ b $ if for each $ x $ you can choose how to distribute numbers into pairs and from which $ x $ pairs choose minimum elements?
输入格式:
The first line contains a single integer $ t $ ( $ 1 \le t \le 1000 $ ) — the number of test cases.
The first line of each test case contains the integer $ n $ ( $ 1 \le n \le 2 \cdot 10^5 $ ).
The second line of each test case contains $ n $ integers $ b_1, b_2, \dots, b_n $ ( $ 1 \le b_1 < b_2 < \dots < b_n \le 2n $ ) — the set you’d like to get.
It’s guaranteed that the sum of $ n $ over test cases doesn’t exceed $ 2 \cdot 10^5 $ .
输出格式:
For each test case, print one number — the number of different $ x $ -s such that it’s possible to obtain the set $ b $ .
样例:
样例输入1:
|
|
样例输出1:
|
|
思路:
实现:
|
|